database/sql 库
在 Go 中使用 SQL 或类似 SQL 的数据库的惯用方法是通过 database/sql
包。它为面向行的数据库提供了一个轻量级接口。
这篇博客是一个快速的入门参考。
特点
database/sql
具有如下特点:
- 统一的编程接口:
database/sql
库提供了一组统一的接口,使得开发人员可以使用相同的方式操作不同的数据库,而不需要学习特定数据库的 API。 - 驱动支持:通过导入第三方数据库驱动程序,
database/sql
可以与多种常见的关系型数据库系统进行交互,如 MySQL、PostgreSQL、SQLite 等。 - 预防 SQL 注入:
database/sql
库通过使用预编译语句和参数化查询等技术,有效预防了 SQL 注入攻击。 - 支持事务:事务是一个优秀的 SQL 包必备功能。
# 顶层抽象
为了在Go中访问数据库,我们需要使用 sql.DB
。你需要使用它来创建语句,事务,执行查询和获取结果。但是要记住,sql.DB
不是一个数据库连接。根据Go规范,“它是一个接口的抽象和数据库的存在,它可能与本地文件一样多样化,通过网络连接访问,或者在内存中和进程中”。
sql.DB
执行以下任务:
- 打开和关闭与底层数据库驱动的连接。
- 管理连接池。
sql.DB
并不是数据库连接,也并未在概念上映射到特定的数据库(Database)或模式(schema)。它只是一个抽象的接口,不同的具体驱动有着不同的实现方式。通常而言,sql.DB
会处理一些重要而麻烦的事情,例如操作具体的驱动打开/关闭实际底层数据库的连接,按需管理连接池。
sql.DB
这一抽象让用户不必考虑如何管理并发访问底层数据库的问题。当一个连接在执行任务时会被标记为正在使用。用完之后会放回连接池中。不过用户如果用完连接后忘记释放,就会产生大量的连接,极可能导致资源耗尽(建立太多连接,打开太多文件,缺少可用网络端口)。
# 连接
# 导入数据库驱动
使用数据库时,除了database/sql
包本身,还需要引入想使用的特定数据库驱动。
您通常不应该直接使用驱动程序包,尽管有些驱动程序会鼓励您这样做。相反,如果可能,您的代码应仅引用 database/sql
中定义的类型。这将有且于避免您的代码依赖于驱动程序,以便您可以使用最少的代码修改来更换底层驱动程序(以及您正在访问的数据库)。
我们常用的数据库基本上都有完整的第三方实现。例如:MySQL驱动 (opens new window)
下载依赖
go get -u github.com/go-sql-driver/mysql
使用MySQL驱动
func Open(driverName, dataSourceName string) (*DB, error)
Open打开一个dirverName指定的数据库,dataSourceName指定数据源,一般至少包括数据库文件名和其它连接必要的信息。
import (
"database/sql"
_ "github.com/go-sql-driver/mysql"
)
func main() {
// DSN:Data Source Name
dsn := "user:password@tcp(127.0.0.1:3306)/dbname"
db, err := sql.Open("mysql", dsn)
if err != nil {
panic(err)
}
defer db.Close() // 注意这行代码要写在上面err判断的下面
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
一般而言,程序需要在退出时通过sql.DB
的Close()
方法释放数据库连接资源。如果其生命周期不超过函数的范围,则应当使用defer db.Close()
执行sql.Open()
并未实际建立起到数据库的连接,也不会验证驱动参数。第一个实际的连接会惰性求值,延迟到第一次需要时建立。用户应该通过db.Ping()
来检查数据库是否实际可用。
if err = db.Ping(); err != nil {
// do something about db error
}
2
3
sql.DB
对象是为了长连接而设计的,不要频繁Open()
和Close()
数据库。而应该为每个待访问的数据库创建一个sql.DB
实例,并在用完前一直保留它。需要时可将其作为参数传递,或注册为全局对象。
如果没有按照database/sql
设计的意图,不把sql.DB
当成长期对象来用而频繁开关启停,就可能遭遇各式各样的错误:无法复用和共享连接,耗尽网络资源,由于TCP连接保持在TIME_WAIT
状态而间断性的失败等……
# 初始化连接
返回的DB对象可以安全地被多个goroutine并发使用,并且维护其自己的空闲连接池。因此,Open函数应该仅被调用一次,很少需要关闭这个DB对象。
接下来,我们定义一个全局变量db
,用来保存数据库连接对象。将上面的示例代码拆分出一个独立的initDB
函数,只需要在程序启动时调用一次该函数完成全局变量db的初始化,其他函数中就可以直接使用全局变量db
了。(注意下方的注意)
// 定义一个全局对象db
var db *sql.DB
// 定义一个初始化数据库的函数
func initDB() (err error) {
// DSN:Data Source Name
dsn := "user:password@tcp(127.0.0.1:3306)/sql_test?charset=utf8mb4&parseTime=True"
// 不会校验账号密码是否正确
// 注意!!!这里不要使用:=,我们是给全局变量赋值,然后在main函数中使用全局变量db
db, err = sql.Open("mysql", dsn)
if err != nil {
return err
}
// 尝试与数据库建立连接(校验dsn是否正确)
err = db.Ping()
if err != nil {
return err
}
return nil
}
func main() {
err := initDB() // 调用输出化数据库的函数
if err != nil {
fmt.Printf("init db failed,err:%v\n", err)
return
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
其中sql.DB
是表示连接的数据库对象(结构体实例),它保存了连接数据库相关的所有信息。它内部维护着一个具有零到多个底层连接的连接池,它可以安全地被多个goroutine同时使用。
SetMaxOpenConns
func (db *DB) SetMaxOpenConns(n int)
SetMaxOpenConns
设置与数据库建立连接的最大数目。 如果n大于0且小于最大闲置连接数,会将最大闲置连接数减小到匹配最大开启连接数的限制。 如果n<=0,不会限制最大开启连接数,默认为0(无限制)。
SetMaxIdleConns
func (db *DB) SetMaxIdleConns(n int)
SetMaxIdleConns设置连接池中的最大闲置连接数。 如果n大于最大开启连接数,则新的最大闲置连接数会减小到匹配最大开启连接数的限制。 如果n<=0,不会保留闲置连接。
# 增删改查
# 建库建表
在MySQL数据库中创建一个数据库
CREATE DATABASE sql_test;
进入数据库:
```sql
use sql_test;
2
执行命令创建测试表:
CREATE TABLE `user` (
`id` BIGINT(20) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(20) DEFAULT '',
`age` INT(11) DEFAULT '0',
PRIMARY KEY(`id`)
)ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4;
2
3
4
5
6
# 查询
为了方便查询,定义一个结构体来存储user表的数据:
type user struct {
id int
age int
name string
}
2
3
4
5
# 单行查询
单行查询db.QueryRow()
执行一次查询,并期望返回最多一行结果(即Row)。QueryRow总是返回非nil的值,直到返回值的Scan方法被调用时,才会返回被延迟的错误。(如:未找到结果)
func (db *DB) QueryRow(query string, args ...interface{}) *Row
query
:是一个包含SQL查询语句的字符串,可以包含占位符(如?
)。args
:是一个可变数量的参数,用于替换查询中的占位符。
QueryRow
会返回一个*Row
对象,这个对象包含了查询结果的第一行(如果有的话),但不包含整个结果集。
// 查询单条数据示例
func queryRowDemo() {
sqlStr := "select id, name, age from user where id=?"
var u user
// 非常重要:确保QueryRow之后调用Scan方法,否则持有的数据库链接不会被释放
err := db.QueryRow(sqlStr, 1).Scan(&u.id, &u.name, &u.age)
if err != nil {
fmt.Printf("scan failed, err:%v\n", err)
return
}
fmt.Printf("id:%d name:%s age:%d\n", u.id, u.name, u.age)
}
2
3
4
5
6
7
8
9
10
11
12
# 多行查询
多行查询db.Query()
执行一次查询,返回多行结果(即Rows),一般用于执行select命令。参数args表示query中的占位参数。
func (db *DB) Query(query string, args ...interface{}) (*Rows, error)
// 查询多条数据示例
func queryMultiRowDemo() {
sqlStr := "select id, name, age from user where id > ?"
rows, err := db.Query(sqlStr, 0)
if err != nil {
fmt.Printf("query failed, err:%v\n", err)
return
}
// 非常重要:关闭rows释放持有的数据库链接
defer rows.Close()
// 循环读取结果集中的数据
for rows.Next() {
var u user
err := rows.Scan(&u.id, &u.name, &u.age)
if err != nil {
fmt.Printf("scan failed, err:%v\n", err)
return
}
fmt.Printf("id:%d name:%s age:%d\n", u.id, u.name, u.age)
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# 插入数据
插入、更新、删除操作都使用Exec
方法
func (db *DB) Exec(query string, args ...interface{}) (Result, error)
Exec执行一次命令(包括查询、删除、更新、插入等),返回的Result是对已执行的SQL命令的总结。参数args表示query中的占位参数。
func insertRowDemo() {
sqlStr := "insert into user(name,age) values(?,?)"
ret, err := db.Exec(sqlStr, "张三", 20)
if err != nil {
fmt.Printf("insert failed, err:%v\n", err)
return
}
theID, err := ret.LastInsertId() //新插入数据的id
if err != nil {
fmt.Printf("get lastinsert ID failed, err:%v\n", err)
return
}
fmt.Printf("insert success, the id is %d.\n", theID)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
# 更新数据
具体更新数据示例代码如下:
// 更新数据
func updateRowDemo() {
sqlStr := "update user set age=? where id = ?"
ret, err := db.Exec(sqlStr, 39, 3)
if err != nil {
fmt.Printf("update failed, err:%v\n", err)
return
}
n, err := ret.RowsAffected() // 操作影响的行数
if err != nil {
fmt.Printf("get RowsAffected failed, err:%v\n", err)
return
}
fmt.Printf("update success, affected rows:%d\n", n)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# 删除数据
// 删除数据
func deleteRowDemo() {
sqlStr := "delete from user where id = ?"
ret, err := db.Exec(sqlStr, 3)
if err != nil {
fmt.Printf("delete failed, err:%v\n", err)
return
}
n, err := ret.RowsAffected() // 操作影响的行数
if err != nil {
fmt.Printf("get RowsAffected failed, err:%v\n", err)
return
}
fmt.Printf("delete success, affected rows:%d\n", n)
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# MySQL 预处理
# 什么是预处理
普通SQL语句执行过程:
- 客户端对SQL语句进行占位符替换得到完整的SQL语句。
- 客户端发送完整SQL语句到MySQL服务端
- MySQL服务端执行完整的SQL语句并将结果返回给客户端。
预处理执行过程:
- 把SQL语句分成两部分,命令部分与数据部分。
- 先把命令部分发送给MySQL服务端,MySQL服务端进行SQL预处理。
- 然后把数据部分发送给MySQL服务端,MySQL服务端对SQL语句进行占位符替换。
- MySQL服务端执行完整的SQL语句并将结果返回给客户端。
# 为什么要预处理
- 优化MySQL服务器重复执行SQL的方法,可以提升服务器性能,提前让服务器编译,一次编译多次执行,节省后续编译的成本。
- 避免SQL注入问题。
# Go 实现MySQL预处理
database/sql
中使用下面的Prepare
方法来实现预处理操作。
func (db *DB) Prepare(query string) (*Stmt, error)
Prepare
方法会先将sql语句发送给MySQL服务端,返回一个准备好的状态用于之后的查询和命令。返回值可以同时执行多个查询和命令。
查询操作的预处理示例代码如下:
// 预处理查询示例
func prepareQueryDemo() {
sqlStr := "select id, name, age from user where id > ?"
stmt, err := db.Prepare(sqlStr)
if err != nil {
fmt.Printf("prepare failed, err:%v\n", err)
return
}
defer stmt.Close()
rows, err := stmt.Query(2)
if err != nil {
fmt.Printf("query failed, err:%v\n", err)
return
}
defer rows.Close()
// 循环读取结果集中的数据
for rows.Next() {
var u user
err := rows.Scan(&u.id, &u.name, &u.age)
if err != nil {
fmt.Printf("scan failed, err:%v\n", err)
return
}
fmt.Printf("id:%d name:%s age:%d\n", u.id, u.name, u.age)
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
插入、更新和删除操作的预处理十分类似,这里以插入操作的预处理为例:
// 预处理插入示例
func prepareInsertDemo() {
sqlStr := "insert into user(name, age) values (?,?)"
stmt, err := db.Prepare(sqlStr)
if err != nil {
fmt.Printf("prepare failed, err:%v\n", err)
return
}
defer stmt.Close()
// 后续只需要拿到stmt去执行操作
_, err = stmt.Exec("曹孟德", 45)
if err != nil {
fmt.Printf("insert failed, err:%v\n", err)
return
}
_, err = stmt.Exec("宋小宝", 45)
if err != nil {
fmt.Printf("insert failed, err:%v\n", err)
return
}
fmt.Println("insert success.")
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# SQL 注入问题
注意
我们任何时候都不应该自己拼接SQL语句!
// sql注入示例
func sqlInjectDemo(name string) {
sqlStr := fmt.Sprintf("select id, name, age from user where name='%s'", name)
fmt.Printf("SQL:%s\n", sqlStr)
var u user
err := db.QueryRow(sqlStr).Scan(&u.id, &u.name, &u.age)
if err != nil {
fmt.Printf("exec failed, err:%v\n", err)
return
}
fmt.Printf("user:%#v\n", u)
}
2
3
4
5
6
7
8
9
10
11
12
此时以下输入字符串都可以引发SQL注入问题:
sqlInjectDemo("xxx' or 1=1#")
sqlInjectDemo("xxx' union select * from user #")
sqlInjectDemo("xxx' and (select count(*) from user) <10 #")
2
3
**补充:**不同的数据库中,SQL语句使用的占位符语法不尽相同。
数据库 | 占位符语法 |
---|---|
MySQL | ? |
PostgreSQL | $1 , $2 等 |
SQLite | ? 和$1 |
Oracle | :name |
# 底层内幕
准备语句有着各种优点:安全,高效,方便。但Go中实现它的方式可能和用户所设想的有轻微不同,尤其是关于和database/sql
内部其他对象交互的部分。
在数据库层面,准备语句Stmt
是与单个数据库连接绑定的。通常的流程是:客户端向服务器发送带有占位符的查询语句用于准备,服务器返回一个语句ID,客户端在实际执行时,只需要传输语句ID和相应的参数即可。因此准备语句无法在连接之间共享,当使用新的数据库连接时,必须重新准备。
database/sql
并没有直接暴露出数据库连接。用户是在DB
或Tx
上执行Prepare
,而不是Conn
。因此database/sql
提供了一些便利处理,例如自动重试。这些机制隐藏在Driver中实现,而不会暴露在用户代码中。其工作原理是:当用户准备一条语句时,它在连接池中的一个连接上进行准备。Stmt
对象会引用它实际使用的连接。当执行Stmt
时,它会尝试会用引用的连接。如果那个连接忙碌或已经被关闭,它会获取一个新的连接,并在连接上重新准备,然后再执行。
因为当原有连接忙时,Stmt
会在其他连接上重新准备。因此当高并发地访问数据库时,大量的连接处于忙碌状态,这会导致Stmt
不断获取新的连接并执行准备,最终导致资源泄露,甚至超出服务端允许的语句数目上限。所以通常应尽量采用扇入的方式减小数据库访问并发数。
# Go 实现MySQL事务
事务:一个最小的不可再分的工作单元;通常一个事务对应一个完整的业务(例如银行账户转账业务,该业务就是一个最小的工作单元),同时这个完整的业务需要执行多次的DML(insert、update、delete)语句共同联合完成。A转账给B,这里面就需要执行两次update操作。
在MySQL中只有使用了Innodb
数据库引擎的数据库或表才支持事务。事务处理可以用来维护数据库的完整性,保证成批的SQL语句要么全部执行,要么全部不执行。
# ACID
通常事务必须满足4个条件(ACID):原子性(Atomicity,或称不可分割性)、一致性(Consistency)、隔离性(Isolation,又称独立性)、持久性(Durability)。
条件 | 解释 |
---|---|
原子性 | 一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。 |
一致性 | 在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设规则,这包含资料的精确度、串联性以及后续数据库可以自发性地完成预定的工作。 |
隔离性 | 数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。 |
持久性 | 事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失 |
# 事务相关方法
Go语言中使用以下三个方法实现MySQL中的事务操作。 开始事务
func (db *DB) Begin() (*Tx, error)
提交事务
func (tx *Tx) Commit() error
回滚事务
func (tx *Tx) Rollback() error
# 事务示例
// 事务操作示例
func transactionDemo() {
tx, err := db.Begin() // 开启事务
if err != nil {
if tx != nil {
tx.Rollback() // 回滚
}
fmt.Printf("begin trans failed, err:%v\n", err)
return
}
sqlStr1 := "Update user set age=30 where id=?"
ret1, err := tx.Exec(sqlStr1, 2)
if err != nil {
tx.Rollback() // 回滚
fmt.Printf("exec sql1 failed, err:%v\n", err)
return
}
affRow1, err := ret1.RowsAffected()
if err != nil {
tx.Rollback() // 回滚
fmt.Printf("exec ret1.RowsAffected() failed, err:%v\n", err)
return
}
sqlStr2 := "Update user set age=40 where id=?"
ret2, err := tx.Exec(sqlStr2, 3)
if err != nil {
tx.Rollback() // 回滚
fmt.Printf("exec sql2 failed, err:%v\n", err)
return
}
affRow2, err := ret2.RowsAffected()
if err != nil {
tx.Rollback() // 回滚
fmt.Printf("exec ret1.RowsAffected() failed, err:%v\n", err)
return
}
fmt.Println(affRow1, affRow2)
if affRow1 == 1 && affRow2 == 1 {
fmt.Println("事务提交啦...")
tx.Commit() // 提交事务
} else {
tx.Rollback()
fmt.Println("事务回滚啦...")
}
fmt.Println("exec trans success!")
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49